Artwork

Контент предоставлен Databricks. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Databricks или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

LLMs: Internals, Hallucinations, and Applications | Data Brew | Episode 33

38:50
 
Поделиться
 

Manage episode 371825794 series 2814833
Контент предоставлен Databricks. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Databricks или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Our fifth season dives into large language models (LLMs), from understanding the internals to the risks of using them and everything in between. While we're at it, we'll be enjoying our morning brew.
In this session, we interviewed Chengyin Eng (Senior Data Scientist, Databricks), Sam Raymond (Senior Data Scientist, Databricks), and Joseph Bradley (Lead Production Specialist - ML, Databricks) on the best practices around LLM use cases, prompt engineering, and how to adapt MLOps for LLMs (i.e., LLMOps).

  continue reading

33 эпизодов

Artwork
iconПоделиться
 
Manage episode 371825794 series 2814833
Контент предоставлен Databricks. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Databricks или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Our fifth season dives into large language models (LLMs), from understanding the internals to the risks of using them and everything in between. While we're at it, we'll be enjoying our morning brew.
In this session, we interviewed Chengyin Eng (Senior Data Scientist, Databricks), Sam Raymond (Senior Data Scientist, Databricks), and Joseph Bradley (Lead Production Specialist - ML, Databricks) on the best practices around LLM use cases, prompt engineering, and how to adapt MLOps for LLMs (i.e., LLMOps).

  continue reading

33 эпизодов

Minden epizód

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство