Artwork

Контент предоставлен AWS Bites. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией AWS Bites или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

108. How to Solve Lambda Python Cold Starts

20:52
 
Поделиться
 

Manage episode 389516288 series 2980070
Контент предоставлен AWS Bites. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией AWS Bites или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

In this episode, we discuss how you can use Python for data science workloads on AWS Lambda. We cover the pros and cons of using Lambda for these workloads compared to other AWS services. We benchmark cold start times and performance for different Lambda deployment options like zip packages, layers, and container images. The results show container images can provide faster cold starts than zip packages once the caches are warmed up. We summarize the optimizations AWS has made to enable performant container image deployments. Overall, Lambda can be a good fit for certain data science workloads, especially those that are bursty and need high concurrency.

💰 SPONSORS 💰 AWS Bites is brought to you by fourTheorem, an Advanced AWS Partner. If you are moving to AWS or need a partner to help you go faster, check us out at fourtheorem.com ! In this episode, we mentioned the following resources.

Do you have any AWS questions you would like us to address? Leave a comment here or connect with us on X, formerly Twitter: - ⁠⁠https://twitter.com/eoins⁠⁠ - ⁠⁠https://twitter.com/loige⁠⁠

  continue reading

140 эпизодов

Artwork

108. How to Solve Lambda Python Cold Starts

AWS Bites

48 subscribers

published

iconПоделиться
 
Manage episode 389516288 series 2980070
Контент предоставлен AWS Bites. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией AWS Bites или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

In this episode, we discuss how you can use Python for data science workloads on AWS Lambda. We cover the pros and cons of using Lambda for these workloads compared to other AWS services. We benchmark cold start times and performance for different Lambda deployment options like zip packages, layers, and container images. The results show container images can provide faster cold starts than zip packages once the caches are warmed up. We summarize the optimizations AWS has made to enable performant container image deployments. Overall, Lambda can be a good fit for certain data science workloads, especially those that are bursty and need high concurrency.

💰 SPONSORS 💰 AWS Bites is brought to you by fourTheorem, an Advanced AWS Partner. If you are moving to AWS or need a partner to help you go faster, check us out at fourtheorem.com ! In this episode, we mentioned the following resources.

Do you have any AWS questions you would like us to address? Leave a comment here or connect with us on X, formerly Twitter: - ⁠⁠https://twitter.com/eoins⁠⁠ - ⁠⁠https://twitter.com/loige⁠⁠

  continue reading

140 эпизодов

Όλα τα επεισόδια

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство