Artwork

Контент предоставлен Breaking Math, Gabriel Hesch, and Autumn Phaneuf. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Breaking Math, Gabriel Hesch, and Autumn Phaneuf или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Exploring GFlowNets and AI-Driven Material Discovery for Carbon Capture

10:48
 
Поделиться
 

Manage episode 446296922 series 2462838
Контент предоставлен Breaking Math, Gabriel Hesch, and Autumn Phaneuf. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Breaking Math, Gabriel Hesch, and Autumn Phaneuf или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

In this episode of Breaking Math, hosts Gabriel Hesch and Autumn Phaneuf dive into the cutting-edge world of Generative Flow Networks (GFlowNets) and their role in artificial intelligence and material science. The discussion centers on how GFlowNets are revolutionizing the discovery of new materials for carbon capture, offering a powerful alternative to traditional AI models. Learn about the mechanics of GFlowNets, their advantages, and the groundbreaking results in developing materials with enhanced CO2 absorption capabilities. The episode also explores the future potential of GFlowNets in AI-driven material discovery and beyond, emphasizing their transformative impact on carbon capture technology and sustainable innovation.

Become a patron of Breaking Math for as little as a buck a month
You can find the paper “Discovery of novel reticular materials for carbon dioxide capture using GFlowNets” by Cipcigan et al in Digital Discovery Journal by the Royal Society of Chemistry.

Follow Breaking Math on Twitter, Instagram, LinkedIn, Website, YouTube, TikTok

Follow Autumn on Twitter and Instagram

Follow Gabe on Twitter.

Become a guest here

email: [email protected]

  continue reading

152 эпизодов

Artwork
iconПоделиться
 
Manage episode 446296922 series 2462838
Контент предоставлен Breaking Math, Gabriel Hesch, and Autumn Phaneuf. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Breaking Math, Gabriel Hesch, and Autumn Phaneuf или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

In this episode of Breaking Math, hosts Gabriel Hesch and Autumn Phaneuf dive into the cutting-edge world of Generative Flow Networks (GFlowNets) and their role in artificial intelligence and material science. The discussion centers on how GFlowNets are revolutionizing the discovery of new materials for carbon capture, offering a powerful alternative to traditional AI models. Learn about the mechanics of GFlowNets, their advantages, and the groundbreaking results in developing materials with enhanced CO2 absorption capabilities. The episode also explores the future potential of GFlowNets in AI-driven material discovery and beyond, emphasizing their transformative impact on carbon capture technology and sustainable innovation.

Become a patron of Breaking Math for as little as a buck a month
You can find the paper “Discovery of novel reticular materials for carbon dioxide capture using GFlowNets” by Cipcigan et al in Digital Discovery Journal by the Royal Society of Chemistry.

Follow Breaking Math on Twitter, Instagram, LinkedIn, Website, YouTube, TikTok

Follow Autumn on Twitter and Instagram

Follow Gabe on Twitter.

Become a guest here

email: [email protected]

  continue reading

152 эпизодов

Все серии

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать