Artwork

Контент предоставлен Alex Molak. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Alex Molak или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Causal AI & Individual Treatment Effects | Scott Mueller Ep. 20 | CausalBanditsPodcast.com

52:40
 
Поделиться
 

Manage episode 430207385 series 3526805
Контент предоставлен Alex Molak. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Alex Molak или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Send us a text

Can we say something about YOUR personal treatment effect?
The estimation of individual treatment effects is the Holy Grail of personalized medicine.
It's also extremely difficult.
Yet, Scott is not discouraged from studying this topic.
In fact, he quit a pretty successful business to study it.
In a series of papers, Scott describes how combining experimental and observational data can help us understand individual causal effects.
Although this sounds enigmatic to many, the intuition behind this mechanism is simpler than you might think.
In the episode we discuss:
🔹 What made Scott quit a successful business he founded and study causal inference?
🔹 How a false conviction about his own skills helped him learn? 🔹 What are individual treatment effects?
🔹 Can we really say something about individual treatment effects?
Ready to dive in?
About The Guest
Scott Mueller is a researcher and a PhD candidate in causal modeling at UCLA, supervised by Prof. Judea Pearl. He's a serial entrepreneur and the founder of UCode, a coding school for kids. His current research focuses on the estimation of individual treatment effects and their bounds. He works under the supervision of professor Judea Pearl.
Connect with Scott:
- Scott on Twitter/X
- Scott's webpage
About The Host
Aleksander (Alex) Molak is an independent machine learning researcher, educator, entrepreneur and a best-selling author in the area of causality.
Connect with Alex:
- Alex on the Internet

Support the show

Causal Bandits Podcast
Causal AI || Causal Machine Learning || Causal Inference & Discovery
Web: https://causalbanditspodcast.com
Connect on LinkedIn: https://www.linkedin.com/in/aleksandermolak/
Join Causal Python Weekly: https://causalpython.io
The Causal Book: https://amzn.to/3QhsRz4

  continue reading

Разделы

1. Causal AI & Individual Treatment Effects | Scott Mueller Ep. 20 | CausalBanditsPodcast.com (00:00:00)

2. [Ad] Rumi.ai (00:14:23)

3. (Cont.) Causal AI & Individual Treatment Effects | Scott Mueller Ep. 20 | CausalBanditsPodcast.com (00:15:12)

28 эпизодов

Artwork
iconПоделиться
 
Manage episode 430207385 series 3526805
Контент предоставлен Alex Molak. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Alex Molak или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Send us a text

Can we say something about YOUR personal treatment effect?
The estimation of individual treatment effects is the Holy Grail of personalized medicine.
It's also extremely difficult.
Yet, Scott is not discouraged from studying this topic.
In fact, he quit a pretty successful business to study it.
In a series of papers, Scott describes how combining experimental and observational data can help us understand individual causal effects.
Although this sounds enigmatic to many, the intuition behind this mechanism is simpler than you might think.
In the episode we discuss:
🔹 What made Scott quit a successful business he founded and study causal inference?
🔹 How a false conviction about his own skills helped him learn? 🔹 What are individual treatment effects?
🔹 Can we really say something about individual treatment effects?
Ready to dive in?
About The Guest
Scott Mueller is a researcher and a PhD candidate in causal modeling at UCLA, supervised by Prof. Judea Pearl. He's a serial entrepreneur and the founder of UCode, a coding school for kids. His current research focuses on the estimation of individual treatment effects and their bounds. He works under the supervision of professor Judea Pearl.
Connect with Scott:
- Scott on Twitter/X
- Scott's webpage
About The Host
Aleksander (Alex) Molak is an independent machine learning researcher, educator, entrepreneur and a best-selling author in the area of causality.
Connect with Alex:
- Alex on the Internet

Support the show

Causal Bandits Podcast
Causal AI || Causal Machine Learning || Causal Inference & Discovery
Web: https://causalbanditspodcast.com
Connect on LinkedIn: https://www.linkedin.com/in/aleksandermolak/
Join Causal Python Weekly: https://causalpython.io
The Causal Book: https://amzn.to/3QhsRz4

  continue reading

Разделы

1. Causal AI & Individual Treatment Effects | Scott Mueller Ep. 20 | CausalBanditsPodcast.com (00:00:00)

2. [Ad] Rumi.ai (00:14:23)

3. (Cont.) Causal AI & Individual Treatment Effects | Scott Mueller Ep. 20 | CausalBanditsPodcast.com (00:15:12)

28 эпизодов

Все серии

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство