Работайте офлайн с приложением Player FM !
RAFT: Adapting Language Model to Domain Specific RAG
Manage episode 426158561 series 3448051
Where adapting LLMs to specialized domains is essential (e.g., recent news, enterprise private documents), we discuss a paper that asks how we adapt pre-trained LLMs for RAG in specialized domains. SallyAnn DeLucia is joined by Sai Kolasani, researcher at UC Berkeley’s RISE Lab (and Arize AI Intern), to talk about his work on RAFT: Adapting Language Model to Domain Specific RAG.
RAFT (Retrieval-Augmented FineTuning) is a training recipe that improves an LLM’s ability to answer questions in a “open-book” in-domain settings. Given a question, and a set of retrieved documents, the model is trained to ignore documents that don’t help in answering the question (aka distractor documents). This coupled with RAFT’s chain-of-thought-style response, helps improve the model’s ability to reason. In domain-specific RAG, RAFT consistently improves the model’s performance across PubMed, HotpotQA, and Gorilla datasets, presenting a post-training recipe to improve pre-trained LLMs to in-domain RAG.
Read it on the blog: https://arize.com/blog/raft-adapting-language-model-to-domain-specific-rag/
To learn more about ML observability, join the Arize AI Slack community or get the latest on our LinkedIn and Twitter.
36 эпизодов
Manage episode 426158561 series 3448051
Where adapting LLMs to specialized domains is essential (e.g., recent news, enterprise private documents), we discuss a paper that asks how we adapt pre-trained LLMs for RAG in specialized domains. SallyAnn DeLucia is joined by Sai Kolasani, researcher at UC Berkeley’s RISE Lab (and Arize AI Intern), to talk about his work on RAFT: Adapting Language Model to Domain Specific RAG.
RAFT (Retrieval-Augmented FineTuning) is a training recipe that improves an LLM’s ability to answer questions in a “open-book” in-domain settings. Given a question, and a set of retrieved documents, the model is trained to ignore documents that don’t help in answering the question (aka distractor documents). This coupled with RAFT’s chain-of-thought-style response, helps improve the model’s ability to reason. In domain-specific RAG, RAFT consistently improves the model’s performance across PubMed, HotpotQA, and Gorilla datasets, presenting a post-training recipe to improve pre-trained LLMs to in-domain RAG.
Read it on the blog: https://arize.com/blog/raft-adapting-language-model-to-domain-specific-rag/
To learn more about ML observability, join the Arize AI Slack community or get the latest on our LinkedIn and Twitter.
36 эпизодов
Все серии
×Добро пожаловать в Player FM!
Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.