Artwork

Контент предоставлен EDGE AI FOUNDATION. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией EDGE AI FOUNDATION или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Deploying TinyML Models at Scale: Insights on Monitoring and Automation with Alessandro Grande of Edge Impulse

20:34
 
Поделиться
 

Manage episode 444991878 series 3574631
Контент предоставлен EDGE AI FOUNDATION. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией EDGE AI FOUNDATION или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Unlock the secrets of deploying TinyML models in real-world scenarios with Alessandro Grande, Head of Product at Edge Impulse. Curious about how TinyML has evolved since its early days? Alessandro takes us through a journey from his initial demos at Arm to the sophisticated, scalable deployments we see today. Learn why continuous model monitoring is not just important but essential for the reliability and functionality of machine learning applications, especially in large-scale IoT deployments. Alessandro shares actionable insights on how to maintain a continuous lifecycle for ML models to handle unpredictable changes and ensure sustained success.
Delve into the intricacies of health-related use cases with a spotlight on the HIFE AI cough monitoring system. Discover best practices for data collection and preparation, including identifying outliers and leveraging Generative AI like ChatGPT 4.0 for efficient data labeling. We also emphasize the importance of building scalable infrastructure for automated ML development. Learn how continuous integration and continuous deployment (CI/CD) pipelines can enhance the lifecycle management of ML models, ensuring security and scalability from day one. This episode is a treasure trove of practical advice for anyone tackling the challenges of deploying ML models in diverse environments.

Send us a text

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

Разделы

1. Deploying TinyML Models at Scale: Insights on Monitoring and Automation with Alessandro Grande of Edge Impulse (00:00:00)

2. Model Monitoring in Real-World Deployment (00:00:05)

3. Health Workflow and Data Collection (00:11:26)

4. Automated Model Deployment in Production (00:18:14)

33 эпизодов

Artwork
iconПоделиться
 
Manage episode 444991878 series 3574631
Контент предоставлен EDGE AI FOUNDATION. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией EDGE AI FOUNDATION или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Unlock the secrets of deploying TinyML models in real-world scenarios with Alessandro Grande, Head of Product at Edge Impulse. Curious about how TinyML has evolved since its early days? Alessandro takes us through a journey from his initial demos at Arm to the sophisticated, scalable deployments we see today. Learn why continuous model monitoring is not just important but essential for the reliability and functionality of machine learning applications, especially in large-scale IoT deployments. Alessandro shares actionable insights on how to maintain a continuous lifecycle for ML models to handle unpredictable changes and ensure sustained success.
Delve into the intricacies of health-related use cases with a spotlight on the HIFE AI cough monitoring system. Discover best practices for data collection and preparation, including identifying outliers and leveraging Generative AI like ChatGPT 4.0 for efficient data labeling. We also emphasize the importance of building scalable infrastructure for automated ML development. Learn how continuous integration and continuous deployment (CI/CD) pipelines can enhance the lifecycle management of ML models, ensuring security and scalability from day one. This episode is a treasure trove of practical advice for anyone tackling the challenges of deploying ML models in diverse environments.

Send us a text

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

Разделы

1. Deploying TinyML Models at Scale: Insights on Monitoring and Automation with Alessandro Grande of Edge Impulse (00:00:00)

2. Model Monitoring in Real-World Deployment (00:00:05)

3. Health Workflow and Data Collection (00:11:26)

4. Automated Model Deployment in Production (00:18:14)

33 эпизодов

Все серии

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать