Artwork

Контент предоставлен HackerNoon. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией HackerNoon или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

A Consensus-Based Algorithm for Non-Convex Multiplayer Games: Nonlinear Oligopoly Games

2:17
 
Поделиться
 

Manage episode 428397116 series 3474369
Контент предоставлен HackerNoon. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией HackerNoon или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/a-consensus-based-algorithm-for-non-convex-multiplayer-games-nonlinear-oligopoly-games.
A novel algorithm using swarm intelligence to find global Nash equilibria in nonconvex multiplayer games, with convergence guarantees and numerical experiments.
Check more stories related to gaming at: https://hackernoon.com/c/gaming. You can also check exclusive content about #games, #consensus-based-optimization, #numerical-experiments, #zeroth-order-algorithm, #nonconvex-multiplayer-games, #global-nash-equilibria, #metaheuristics, #mean-field-convergence, and more.
This story was written by: @oligopoly. Learn more about this writer by checking @oligopoly's about page, and for more stories, please visit hackernoon.com.
The study was conducted by Enis Chenchene, Hui Huang, Jinniao Qiu and Hui Chen. They studied the dependence of Algorithm 1 with respect to the algorithm’s parameters to solve (3.5) of good produced. They found no significant differences in the convergence behavior of anisotropic or isotropic dynamics.

  continue reading

135 эпизодов

Artwork
iconПоделиться
 
Manage episode 428397116 series 3474369
Контент предоставлен HackerNoon. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией HackerNoon или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/a-consensus-based-algorithm-for-non-convex-multiplayer-games-nonlinear-oligopoly-games.
A novel algorithm using swarm intelligence to find global Nash equilibria in nonconvex multiplayer games, with convergence guarantees and numerical experiments.
Check more stories related to gaming at: https://hackernoon.com/c/gaming. You can also check exclusive content about #games, #consensus-based-optimization, #numerical-experiments, #zeroth-order-algorithm, #nonconvex-multiplayer-games, #global-nash-equilibria, #metaheuristics, #mean-field-convergence, and more.
This story was written by: @oligopoly. Learn more about this writer by checking @oligopoly's about page, and for more stories, please visit hackernoon.com.
The study was conducted by Enis Chenchene, Hui Huang, Jinniao Qiu and Hui Chen. They studied the dependence of Algorithm 1 with respect to the algorithm’s parameters to solve (3.5) of good produced. They found no significant differences in the convergence behavior of anisotropic or isotropic dynamics.

  continue reading

135 эпизодов

Все серии

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство