Artwork

Контент предоставлен LessWrong. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией LessWrong или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

“How will we update about scheming?” by ryan_greenblatt

1:18:48
 
Поделиться
 

Manage episode 460038823 series 3364758
Контент предоставлен LessWrong. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией LessWrong или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
I mostly work on risks from scheming (that is, misaligned, power-seeking AIs that plot against their creators such as by faking alignment). Recently, I (and co-authors) released "Alignment Faking in Large Language Models", which provides empirical evidence for some components of the scheming threat model.
One question that's really important is how likely scheming is. But it's also really important to know how much we expect this uncertainty to be resolved by various key points in the future. I think it's about 25% likely that the first AIs capable of obsoleting top human experts[1] are scheming. It's really important for me to know whether I expect to make basically no updates to my P(scheming)[2] between here and the advent of potentially dangerously scheming models, or whether I expect to be basically totally confident one way or another by that point (in the same way that, though I might [...]
---
Outline:
(03:20) My main qualitative takeaways
(04:56) Its reasonably likely (55%), conditional on scheming being a big problem, that we will get smoking guns.
(05:38) Its reasonably likely (45%), conditional on scheming being a big problem, that we wont get smoking guns prior to very powerful AI.
(15:59) My P(scheming) is strongly affected by future directions in model architecture and how the models are trained
(16:33) The model
(22:38) Properties of the AI system and training process
(23:02) Opaque goal-directed reasoning ability
(29:24) Architectural opaque recurrence and depth
(34:14) Where do capabilities come from?
(39:42) Overall distribution from just properties of the AI system and training
(41:20) Direct observations
(41:43) Baseline negative updates
(44:35) Model organisms
(48:21) Catching various types of problematic behavior
(51:22) Other observations and countermeasures
(52:02) Training processes with varying (apparent) situational awareness
(54:05) Training AIs to seem highly corrigible and (mostly) myopic
(55:46) Reward hacking
(57:28) P(scheming) under various scenarios (putting aside mitigations)
(01:05:19) An optimistic and a pessimistic scenario for properties
(01:10:26) Conclusion
(01:11:58) Appendix: Caveats and definitions
(01:14:49) Appendix: Capabilities from intelligent learning algorithms
The original text contained 15 footnotes which were omitted from this narration.
---
First published:
January 6th, 2025
Source:
https://www.lesswrong.com/posts/aEguDPoCzt3287CCD/how-will-we-update-about-scheming
---
Narrated by TYPE III AUDIO.
  continue reading

417 эпизодов

Artwork
iconПоделиться
 
Manage episode 460038823 series 3364758
Контент предоставлен LessWrong. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией LessWrong или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
I mostly work on risks from scheming (that is, misaligned, power-seeking AIs that plot against their creators such as by faking alignment). Recently, I (and co-authors) released "Alignment Faking in Large Language Models", which provides empirical evidence for some components of the scheming threat model.
One question that's really important is how likely scheming is. But it's also really important to know how much we expect this uncertainty to be resolved by various key points in the future. I think it's about 25% likely that the first AIs capable of obsoleting top human experts[1] are scheming. It's really important for me to know whether I expect to make basically no updates to my P(scheming)[2] between here and the advent of potentially dangerously scheming models, or whether I expect to be basically totally confident one way or another by that point (in the same way that, though I might [...]
---
Outline:
(03:20) My main qualitative takeaways
(04:56) Its reasonably likely (55%), conditional on scheming being a big problem, that we will get smoking guns.
(05:38) Its reasonably likely (45%), conditional on scheming being a big problem, that we wont get smoking guns prior to very powerful AI.
(15:59) My P(scheming) is strongly affected by future directions in model architecture and how the models are trained
(16:33) The model
(22:38) Properties of the AI system and training process
(23:02) Opaque goal-directed reasoning ability
(29:24) Architectural opaque recurrence and depth
(34:14) Where do capabilities come from?
(39:42) Overall distribution from just properties of the AI system and training
(41:20) Direct observations
(41:43) Baseline negative updates
(44:35) Model organisms
(48:21) Catching various types of problematic behavior
(51:22) Other observations and countermeasures
(52:02) Training processes with varying (apparent) situational awareness
(54:05) Training AIs to seem highly corrigible and (mostly) myopic
(55:46) Reward hacking
(57:28) P(scheming) under various scenarios (putting aside mitigations)
(01:05:19) An optimistic and a pessimistic scenario for properties
(01:10:26) Conclusion
(01:11:58) Appendix: Caveats and definitions
(01:14:49) Appendix: Capabilities from intelligent learning algorithms
The original text contained 15 footnotes which were omitted from this narration.
---
First published:
January 6th, 2025
Source:
https://www.lesswrong.com/posts/aEguDPoCzt3287CCD/how-will-we-update-about-scheming
---
Narrated by TYPE III AUDIO.
  continue reading

417 эпизодов

Все серии

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать