Artwork

Контент предоставлен Zeta Alpha. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Zeta Alpha или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Baking the Future of Information Retrieval Models

27:05
 
Поделиться
 

Manage episode 413396136 series 3446693
Контент предоставлен Zeta Alpha. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Zeta Alpha или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

In this episode of Neural Search Talks, we're chatting with Aamir Shakir from Mixed Bread AI, who shares his insights on starting a company that aims to make search smarter with AI. He details their approach to overcoming challenges in embedding models, touching on the significance of data diversity, novel loss functions, and the future of multilingual and multimodal capabilities. We also get insights on their journey, the ups and downs, and what they're excited about for the future.

Timestamps: 0:00 Introduction 0:25 How did mixedbread.ai start? 2:16 The story behind the company name and its "bakers" 4:25 What makes Berlin a great pool for AI talent 6:12 Building as a GPU-poor team 7:05 The recipe behind mxbai-embed-large-v1 9:56 The Angle objective for embedding models 15:00 Going beyond Matryoshka with mxbai-embed-2d-large-v1 17:45 Supporting binary embeddings & quantization 19:07 Collecting large-scale data is key for robust embedding models 21:50 The importance of multilingual and multimodal models for IR 24:07 Where will mixedbread.ai be in 12 months? 26:46 Outro

  continue reading

21 эпизодов

Artwork
iconПоделиться
 
Manage episode 413396136 series 3446693
Контент предоставлен Zeta Alpha. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Zeta Alpha или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

In this episode of Neural Search Talks, we're chatting with Aamir Shakir from Mixed Bread AI, who shares his insights on starting a company that aims to make search smarter with AI. He details their approach to overcoming challenges in embedding models, touching on the significance of data diversity, novel loss functions, and the future of multilingual and multimodal capabilities. We also get insights on their journey, the ups and downs, and what they're excited about for the future.

Timestamps: 0:00 Introduction 0:25 How did mixedbread.ai start? 2:16 The story behind the company name and its "bakers" 4:25 What makes Berlin a great pool for AI talent 6:12 Building as a GPU-poor team 7:05 The recipe behind mxbai-embed-large-v1 9:56 The Angle objective for embedding models 15:00 Going beyond Matryoshka with mxbai-embed-2d-large-v1 17:45 Supporting binary embeddings & quantization 19:07 Collecting large-scale data is key for robust embedding models 21:50 The importance of multilingual and multimodal models for IR 24:07 Where will mixedbread.ai be in 12 months? 26:46 Outro

  continue reading

21 эпизодов

Todos os episódios

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать