Artwork

Контент предоставлен Zeta Alpha. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Zeta Alpha или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Learning to Retrieve Passages without Supervision: finally unsupervised Neural IR?

59:10
 
Поделиться
 

Manage episode 355037189 series 3446693
Контент предоставлен Zeta Alpha. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Zeta Alpha или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

In this third episode of the Neural Information Retrieval Talks podcast, Andrew Yates and Sergi Castella discuss the paper "Learning to Retrieve Passages without Supervision" by Ori Ram et al.

Despite the massive advances in Neural Information Retrieval in the past few years, statistical models still overperform neural models when no annotations are available at all. This paper proposes a new self-supervised pertaining task for Dense Information Retrieval that manages to beat BM25 on some benchmarks without using any label.

Paper: https://arxiv.org/abs/2112.07708

Timestamps:

00:00 Introduction

00:36 "Learning to Retrieve Passages Without Supervision"

02:20 Open Domain Question Answering

05:05 Related work: Families of Retrieval Models

08:30 Contrastive Learning

11:18 Siamese Networks, Bi-Encoders and Dual-Encoders

13:33 Choosing Negative Samples

17:46 Self supervision: how to train IR models without labels.

21:31 The modern recipe for SOTA Retrieval Models

23:50 Methodology: a new proposed self supervision task

26:40 Datasets, metrics and baselines

\33:50 Results: Zero-Shot performance

43:07 Results: Few-shot performance

47:15 Practically, is not using labels relevant after all?

51:37 How would you "break" the Spider model?

53:23 How long until Neural IR models outperform BM25 out-of-the-box robustly?

54:50 Models as a service: OpenAI's text embeddings API

Contact: castella@zeta-alpha.com

  continue reading

21 эпизодов

Artwork
iconПоделиться
 
Manage episode 355037189 series 3446693
Контент предоставлен Zeta Alpha. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Zeta Alpha или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

In this third episode of the Neural Information Retrieval Talks podcast, Andrew Yates and Sergi Castella discuss the paper "Learning to Retrieve Passages without Supervision" by Ori Ram et al.

Despite the massive advances in Neural Information Retrieval in the past few years, statistical models still overperform neural models when no annotations are available at all. This paper proposes a new self-supervised pertaining task for Dense Information Retrieval that manages to beat BM25 on some benchmarks without using any label.

Paper: https://arxiv.org/abs/2112.07708

Timestamps:

00:00 Introduction

00:36 "Learning to Retrieve Passages Without Supervision"

02:20 Open Domain Question Answering

05:05 Related work: Families of Retrieval Models

08:30 Contrastive Learning

11:18 Siamese Networks, Bi-Encoders and Dual-Encoders

13:33 Choosing Negative Samples

17:46 Self supervision: how to train IR models without labels.

21:31 The modern recipe for SOTA Retrieval Models

23:50 Methodology: a new proposed self supervision task

26:40 Datasets, metrics and baselines

\33:50 Results: Zero-Shot performance

43:07 Results: Few-shot performance

47:15 Practically, is not using labels relevant after all?

51:37 How would you "break" the Spider model?

53:23 How long until Neural IR models outperform BM25 out-of-the-box robustly?

54:50 Models as a service: OpenAI's text embeddings API

Contact: castella@zeta-alpha.com

  continue reading

21 эпизодов

Все серии

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать