Artwork

Контент предоставлен NLP Highlights and Allen Institute for Artificial Intelligence. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией NLP Highlights and Allen Institute for Artificial Intelligence или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

99 - Evaluating Protein Transfer Learning, With Roshan Rao And Neil Thomas

44:49
 
Поделиться
 

Manage episode 248205583 series 1452120
Контент предоставлен NLP Highlights and Allen Institute for Artificial Intelligence. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией NLP Highlights and Allen Institute for Artificial Intelligence или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
For this episode, we chatted with Neil Thomas and Roshan Rao about modeling protein sequences and evaluating transfer learning methods for a set of five protein modeling tasks. Learning representations using self-supervised pretaining objectives has shown promising results in transferring to downstream tasks in protein sequence modeling, just like it has in NLP. We started off by discussing the similarities and differences between language and protein sequence data, and how the contextual embedding techniques are applicable also to protein sequences. Neil and Roshan then described a set of five benchmark tasks to assess the quality of protein embeddings (TAPE), particularly in terms of how well they capture the structural, functional, and evolutionary aspects of proteins. The results from the experiments they ran with various model architectures indicated that there was not a single best performing model across all tasks, and that there is a lot of room for future work in protein sequence modeling. Neil Thomas and Roshan Rao are PhD students at UC Berkeley. Paper: https://www.biorxiv.org/content/10.1101/676825v1 Blog post: https://bair.berkeley.edu/blog/2019/11/04/proteins/
  continue reading

145 эпизодов

Artwork
iconПоделиться
 
Manage episode 248205583 series 1452120
Контент предоставлен NLP Highlights and Allen Institute for Artificial Intelligence. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией NLP Highlights and Allen Institute for Artificial Intelligence или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
For this episode, we chatted with Neil Thomas and Roshan Rao about modeling protein sequences and evaluating transfer learning methods for a set of five protein modeling tasks. Learning representations using self-supervised pretaining objectives has shown promising results in transferring to downstream tasks in protein sequence modeling, just like it has in NLP. We started off by discussing the similarities and differences between language and protein sequence data, and how the contextual embedding techniques are applicable also to protein sequences. Neil and Roshan then described a set of five benchmark tasks to assess the quality of protein embeddings (TAPE), particularly in terms of how well they capture the structural, functional, and evolutionary aspects of proteins. The results from the experiments they ran with various model architectures indicated that there was not a single best performing model across all tasks, and that there is a lot of room for future work in protein sequence modeling. Neil Thomas and Roshan Rao are PhD students at UC Berkeley. Paper: https://www.biorxiv.org/content/10.1101/676825v1 Blog post: https://bair.berkeley.edu/blog/2019/11/04/proteins/
  continue reading

145 эпизодов

Все серии

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать