Artwork

Контент предоставлен Michael Kennedy. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Michael Kennedy или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

#516: Accelerating Python Data Science at NVIDIA

1:05:42
 
Поделиться
 

Manage episode 501272622 series 1422209
Контент предоставлен Michael Kennedy. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Michael Kennedy или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Python’s data stack is getting a serious GPU turbo boost. In this episode, Ben Zaitlen from NVIDIA joins us to unpack RAPIDS, the open source toolkit that lets pandas, scikit-learn, Spark, Polars, and even NetworkX execute on GPUs. We trace the project’s origin and why NVIDIA built it in the open, then dig into the pieces that matter in practice: cuDF for DataFrames, cuML for ML, cuGraph for graphs, cuXfilter for dashboards, and friends like cuSpatial and cuSignal. We talk real speedups, how the pandas accelerator works without a rewrite, and what becomes possible when jobs that used to take hours finish in minutes. You’ll hear strategies for datasets bigger than GPU memory, scaling out with Dask or Ray, Spark acceleration, and the growing role of vector search with cuVS for AI workloads. If you know the CPU tools, this is your on-ramp to the same APIs at GPU speed.
Episode sponsors
Posit
Talk Python Courses

Links from the show

RAPIDS: github.com/rapidsai
Example notebooks showing drop-in accelerators: github.com
Benjamin Zaitlen - LinkedIn: linkedin.com
RAPIDS Deployment Guide (Stable): docs.rapids.ai
RAPIDS cuDF API Docs (Stable): docs.rapids.ai
Asianometry YouTube Video: youtube.com
cuDF pandas Accelerator (Stable): docs.rapids.ai
Watch this episode on YouTube: youtube.com
Episode #516 deep-dive: talkpython.fm/516
Episode transcripts: talkpython.fm
Theme Song: Developer Rap
🥁 Served in a Flask 🎸: talkpython.fm/flasksong
---== Don't be a stranger ==---
YouTube: youtube.com/@talkpython
Bluesky: @talkpython.fm
Mastodon: @[email protected]
X.com: @talkpython
Michael on Bluesky: @mkennedy.codes
Michael on Mastodon: @[email protected]
Michael on X.com: @mkennedy
  continue reading

724 эпизодов

Artwork
iconПоделиться
 
Manage episode 501272622 series 1422209
Контент предоставлен Michael Kennedy. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Michael Kennedy или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Python’s data stack is getting a serious GPU turbo boost. In this episode, Ben Zaitlen from NVIDIA joins us to unpack RAPIDS, the open source toolkit that lets pandas, scikit-learn, Spark, Polars, and even NetworkX execute on GPUs. We trace the project’s origin and why NVIDIA built it in the open, then dig into the pieces that matter in practice: cuDF for DataFrames, cuML for ML, cuGraph for graphs, cuXfilter for dashboards, and friends like cuSpatial and cuSignal. We talk real speedups, how the pandas accelerator works without a rewrite, and what becomes possible when jobs that used to take hours finish in minutes. You’ll hear strategies for datasets bigger than GPU memory, scaling out with Dask or Ray, Spark acceleration, and the growing role of vector search with cuVS for AI workloads. If you know the CPU tools, this is your on-ramp to the same APIs at GPU speed.
Episode sponsors
Posit
Talk Python Courses

Links from the show

RAPIDS: github.com/rapidsai
Example notebooks showing drop-in accelerators: github.com
Benjamin Zaitlen - LinkedIn: linkedin.com
RAPIDS Deployment Guide (Stable): docs.rapids.ai
RAPIDS cuDF API Docs (Stable): docs.rapids.ai
Asianometry YouTube Video: youtube.com
cuDF pandas Accelerator (Stable): docs.rapids.ai
Watch this episode on YouTube: youtube.com
Episode #516 deep-dive: talkpython.fm/516
Episode transcripts: talkpython.fm
Theme Song: Developer Rap
🥁 Served in a Flask 🎸: talkpython.fm/flasksong
---== Don't be a stranger ==---
YouTube: youtube.com/@talkpython
Bluesky: @talkpython.fm
Mastodon: @[email protected]
X.com: @talkpython
Michael on Bluesky: @mkennedy.codes
Michael on Mastodon: @[email protected]
Michael on X.com: @mkennedy
  continue reading

724 эпизодов

Alle episoder

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать