Artwork

Контент предоставлен The Data Flowcast. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией The Data Flowcast или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

The Power of Airflow in Modern Data Environments at Wynn Las Vegas with Siva Krishna Yetukuri

24:31
 
Поделиться
 

Manage episode 421020854 series 2053958
Контент предоставлен The Data Flowcast. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией The Data Flowcast или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Understanding the critical role of data integration and management is essential for driving business success, particularly in a dynamic environment like a luxury casino resort. In this episode, we sit down with Siva Krishna Yetukuri, Cloud Data Architect at Wynn Las Vegas, to explore how Airflow and other tools are transforming data workflows and customer experiences at Wynn Las Vegas. Key Takeaways: (02:00) Siva designs and builds cutting-edge data pipelines and architectures. (02:54) Wynn is building a data platform to drive surveys and marketing strategies. (05:00) Airflow is the backbone of data ingestion, curation and integration. (07:00) Custom operators in Airflow enhance monitoring and reporting. (09:00) Excitement surrounds the use of Airflow 2.9 and its new features. (08:32) A metadata database drives Airflow workflows and captures metrics. (12:31) Understanding Airflow fundamentals in layman’s terms simplifies complexity. (16:33) Transitioning from Control-M to Airflow eases building complex workflows. (24:06) ML models for volume and freshness anomalies improve data quality. (20:15) DAGs are often auto-generated, simplifying the process for engineers. Resources Mentioned: Apache Airflow - https://airflow.apache.org/ Snowflake - https://www.snowflake.com/ Databricks - https://databricks.com/ Great Expectations - https://greatexpectations.io/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #ai #automation #airflow #machinelearning
  continue reading

41 эпизодов

Artwork
iconПоделиться
 
Manage episode 421020854 series 2053958
Контент предоставлен The Data Flowcast. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией The Data Flowcast или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Understanding the critical role of data integration and management is essential for driving business success, particularly in a dynamic environment like a luxury casino resort. In this episode, we sit down with Siva Krishna Yetukuri, Cloud Data Architect at Wynn Las Vegas, to explore how Airflow and other tools are transforming data workflows and customer experiences at Wynn Las Vegas. Key Takeaways: (02:00) Siva designs and builds cutting-edge data pipelines and architectures. (02:54) Wynn is building a data platform to drive surveys and marketing strategies. (05:00) Airflow is the backbone of data ingestion, curation and integration. (07:00) Custom operators in Airflow enhance monitoring and reporting. (09:00) Excitement surrounds the use of Airflow 2.9 and its new features. (08:32) A metadata database drives Airflow workflows and captures metrics. (12:31) Understanding Airflow fundamentals in layman’s terms simplifies complexity. (16:33) Transitioning from Control-M to Airflow eases building complex workflows. (24:06) ML models for volume and freshness anomalies improve data quality. (20:15) DAGs are often auto-generated, simplifying the process for engineers. Resources Mentioned: Apache Airflow - https://airflow.apache.org/ Snowflake - https://www.snowflake.com/ Databricks - https://databricks.com/ Great Expectations - https://greatexpectations.io/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #ai #automation #airflow #machinelearning
  continue reading

41 эпизодов

Усі епізоди

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать