Artwork

Контент предоставлен The Data Flowcast. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией The Data Flowcast или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Airflow Strategies for Business Efficiency at Campbell with Larry Komenda

26:10
 
Поделиться
 

Manage episode 430782464 series 2948506
Контент предоставлен The Data Flowcast. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией The Data Flowcast или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Managing data workflows well can change the game for any company. In this episode, we talk about how Airflow makes this possible. Larry Komenda, Chief Technology Officer at Campbell, shares how Airflow supports their operations and improves efficiency. Larry discusses his role at Campbell, their switch to Airflow, and its impact. We look at their strategies for testing and maintaining reliable workflows and how these help their business. Key Takeaways: (02:26) Strong technology and data systems are crucial for Campbell’s investment process. (05:03) Airflow manages data pipelines efficiently in the market data team. (07:39) Airflow supports various departments, including trading and operations. (09:22) Machine learning models run on dedicated Airflow instances. (11:12) Reliable workflows are ensured through thorough testing and development. (13:45) Business tasks are organized separately from Airflow for easier testing. (15:30) Non-technical teams have access to Airflow for better efficiency. (17:20) Thorough testing before deploying to Airflow is essential. (19:10) Non-technical users can interact with Airflow DAGs to solve their issues. (21:55) Airflow improves efficiency and reliability in trading and operations. (24:40) Enhancing the Airflow UI for non-technical users is important for accessibility. Resources Mentioned: Larry Komenda - https://www.linkedin.com/in/larrykomenda/ Campbell - https://www.linkedin.com/company/campbell-and-company/ 30% off Airflow Summit Ticket - https://ti.to/airflowsummit/2024/discount/30DISC_ASTRONOMER Apache Airflow - https://airflow.apache.org/ NumPy - https://numpy.org/ Python - https://www.python.org/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
  continue reading

33 эпизодов

Artwork
iconПоделиться
 
Manage episode 430782464 series 2948506
Контент предоставлен The Data Flowcast. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией The Data Flowcast или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Managing data workflows well can change the game for any company. In this episode, we talk about how Airflow makes this possible. Larry Komenda, Chief Technology Officer at Campbell, shares how Airflow supports their operations and improves efficiency. Larry discusses his role at Campbell, their switch to Airflow, and its impact. We look at their strategies for testing and maintaining reliable workflows and how these help their business. Key Takeaways: (02:26) Strong technology and data systems are crucial for Campbell’s investment process. (05:03) Airflow manages data pipelines efficiently in the market data team. (07:39) Airflow supports various departments, including trading and operations. (09:22) Machine learning models run on dedicated Airflow instances. (11:12) Reliable workflows are ensured through thorough testing and development. (13:45) Business tasks are organized separately from Airflow for easier testing. (15:30) Non-technical teams have access to Airflow for better efficiency. (17:20) Thorough testing before deploying to Airflow is essential. (19:10) Non-technical users can interact with Airflow DAGs to solve their issues. (21:55) Airflow improves efficiency and reliability in trading and operations. (24:40) Enhancing the Airflow UI for non-technical users is important for accessibility. Resources Mentioned: Larry Komenda - https://www.linkedin.com/in/larrykomenda/ Campbell - https://www.linkedin.com/company/campbell-and-company/ 30% off Airflow Summit Ticket - https://ti.to/airflowsummit/2024/discount/30DISC_ASTRONOMER Apache Airflow - https://airflow.apache.org/ NumPy - https://numpy.org/ Python - https://www.python.org/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
  continue reading

33 эпизодов

Todos os episódios

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство