Artwork

Контент предоставлен The Data Flowcast. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией The Data Flowcast или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Building Resilient Data Systems for Modern Enterprises at Astrafy with Andrea Bombino

28:29
 
Поделиться
 

Manage episode 448897519 series 2948506
Контент предоставлен The Data Flowcast. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией The Data Flowcast или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Efficient data orchestration is the backbone of modern analytics and AI-driven workflows. Without the right tools, even the best data can fall short of its potential. In this episode, Andrea Bombino, Co-Founder and Head of Analytics Engineering at Astrafy, shares insights into his team’s approach to optimizing data transformation and orchestration using tools like datasets and Pub/Sub to drive real-time processing. Andrea explains how they leverage Apache Airflow and Google Cloud to power dynamic data workflows.

Key Takeaways:

(01:55) Astrafy helps companies manage data using Google Cloud.

(04:36) Airflow is central to Astrafy’s data engineering efforts.

(07:17) Datasets and Pub/Sub are used for real-time workflows.

(09:59) Pub/Sub links multiple Airflow environments.

(12:40) Datasets eliminate the need for constant monitoring.

(15:22) Airflow updates have improved large-scale data operations.

(18:03) New Airflow API features make dataset updates easier.

(20:45) Real-time orchestration speeds up data processing for clients.

(23:26) Pub/Sub enhances flexibility across cloud environments.

(26:08) Future Airflow features will offer more control over data workflows.

Resources Mentioned:

Andrea Bombino -

https://www.linkedin.com/in/andrea-bombino/

Astrafy -

https://www.linkedin.com/company/astrafy/

Apache Airflow -

https://airflow.apache.org/

Google Cloud -

https://cloud.google.com/

dbt -

https://www.getdbt.com/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

41 эпизодов

Artwork
iconПоделиться
 
Manage episode 448897519 series 2948506
Контент предоставлен The Data Flowcast. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией The Data Flowcast или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Efficient data orchestration is the backbone of modern analytics and AI-driven workflows. Without the right tools, even the best data can fall short of its potential. In this episode, Andrea Bombino, Co-Founder and Head of Analytics Engineering at Astrafy, shares insights into his team’s approach to optimizing data transformation and orchestration using tools like datasets and Pub/Sub to drive real-time processing. Andrea explains how they leverage Apache Airflow and Google Cloud to power dynamic data workflows.

Key Takeaways:

(01:55) Astrafy helps companies manage data using Google Cloud.

(04:36) Airflow is central to Astrafy’s data engineering efforts.

(07:17) Datasets and Pub/Sub are used for real-time workflows.

(09:59) Pub/Sub links multiple Airflow environments.

(12:40) Datasets eliminate the need for constant monitoring.

(15:22) Airflow updates have improved large-scale data operations.

(18:03) New Airflow API features make dataset updates easier.

(20:45) Real-time orchestration speeds up data processing for clients.

(23:26) Pub/Sub enhances flexibility across cloud environments.

(26:08) Future Airflow features will offer more control over data workflows.

Resources Mentioned:

Andrea Bombino -

https://www.linkedin.com/in/andrea-bombino/

Astrafy -

https://www.linkedin.com/company/astrafy/

Apache Airflow -

https://airflow.apache.org/

Google Cloud -

https://cloud.google.com/

dbt -

https://www.getdbt.com/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

41 эпизодов

Все серии

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать