Artwork

Контент предоставлен Daniel Bashir. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Daniel Bashir или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Michael Sipser: Problems in the Theory of Computation

1:28:21
 
Поделиться
 

Manage episode 411965595 series 2975159
Контент предоставлен Daniel Bashir. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Daniel Bashir или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

In episode 119 of The Gradient Podcast, Daniel Bashir speaks to Professor Michael Sipser.

Professor Sipser is the Donner Professor of Mathematics and member of the Computer Science and Artificial Intelligence Laboratory at MIT.

He received his PhD from UC Berkeley in 1980 and joined the MIT faculty that same year. He was Chairman of Applied Mathematics from 1998 to 2000 and served as Head of the Mathematics Department 2004-2014. He served as interim Dean of Science 2013-2014 and then as Dean of Science 2014-2020.

He was a research staff member at IBM Research in 1980, spent the 1985-86 academic year on the faculty of the EECS department at Berkeley and at MSRI, and was a Lady Davis Fellow at Hebrew University in 1988. His research areas are in algorithms and complexity theory, specifically efficient error correcting codes, interactive proof systems, randomness, quantum computation, and establishing the inherent computational difficulty of problems. He is the author of the widely used textbook, Introduction to the Theory of Computation (Third Edition, Cengage, 2012).

Have suggestions for future podcast guests (or other feedback)? Let us know here or reach Daniel at editor@thegradient.pub

Subscribe to The Gradient Podcast: Apple Podcasts | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (01:40) Professor Sipser’s background

* (04:35) On interesting questions

* (09:00) Different kinds of research problems

* (13:00) What makes certain problems difficult

* (18:48) Nature of the P vs NP problem

* (24:42) Identifying interesting problems

* (28:50) Lower bounds on the size of sweeping automata

* (29:50) Why sweeping automata + headway to P vs. NP

* (36:40) Insights from sweeping automata, infinite analogues to finite automata problems

* (40:45) Parity circuits

* (43:20) Probabilistic restriction method

* (47:20) Relativization and the polynomial time hierarchy

* (55:10) P vs. NP

* (57:23) The non-connection between GO’s polynomial space hardness and AlphaGo

* (1:00:40) On handicapping Turing Machines vs. oracle strategies

* (1:04:25) The Natural Proofs Barrier and approaches to P vs. NP

* (1:11:05) Debates on methods for P vs. NP

* (1:15:04) On the possibility of solving P vs. NP

* (1:18:20) On academia and its role

* (1:27:51) Outro

Links:

* Professor Sipser’s homepage

* Papers discussed/read

* Halting space-bounded computations (1978)

* Lower bounds on the size of sweeping automata (1979)

* GO is Polynomial-Space Hard (1980)

* A complexity theoretic approach to randomness (1983)

* Parity, circuits, and the polynomial-time hierarchy (1984)

* A follow-up to Furst-Saxe-Sipser

* The Complexity of Finite Functions (1991)


Get full access to The Gradient at thegradientpub.substack.com/subscribe
  continue reading

150 эпизодов

Artwork
iconПоделиться
 
Manage episode 411965595 series 2975159
Контент предоставлен Daniel Bashir. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Daniel Bashir или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

In episode 119 of The Gradient Podcast, Daniel Bashir speaks to Professor Michael Sipser.

Professor Sipser is the Donner Professor of Mathematics and member of the Computer Science and Artificial Intelligence Laboratory at MIT.

He received his PhD from UC Berkeley in 1980 and joined the MIT faculty that same year. He was Chairman of Applied Mathematics from 1998 to 2000 and served as Head of the Mathematics Department 2004-2014. He served as interim Dean of Science 2013-2014 and then as Dean of Science 2014-2020.

He was a research staff member at IBM Research in 1980, spent the 1985-86 academic year on the faculty of the EECS department at Berkeley and at MSRI, and was a Lady Davis Fellow at Hebrew University in 1988. His research areas are in algorithms and complexity theory, specifically efficient error correcting codes, interactive proof systems, randomness, quantum computation, and establishing the inherent computational difficulty of problems. He is the author of the widely used textbook, Introduction to the Theory of Computation (Third Edition, Cengage, 2012).

Have suggestions for future podcast guests (or other feedback)? Let us know here or reach Daniel at editor@thegradient.pub

Subscribe to The Gradient Podcast: Apple Podcasts | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (01:40) Professor Sipser’s background

* (04:35) On interesting questions

* (09:00) Different kinds of research problems

* (13:00) What makes certain problems difficult

* (18:48) Nature of the P vs NP problem

* (24:42) Identifying interesting problems

* (28:50) Lower bounds on the size of sweeping automata

* (29:50) Why sweeping automata + headway to P vs. NP

* (36:40) Insights from sweeping automata, infinite analogues to finite automata problems

* (40:45) Parity circuits

* (43:20) Probabilistic restriction method

* (47:20) Relativization and the polynomial time hierarchy

* (55:10) P vs. NP

* (57:23) The non-connection between GO’s polynomial space hardness and AlphaGo

* (1:00:40) On handicapping Turing Machines vs. oracle strategies

* (1:04:25) The Natural Proofs Barrier and approaches to P vs. NP

* (1:11:05) Debates on methods for P vs. NP

* (1:15:04) On the possibility of solving P vs. NP

* (1:18:20) On academia and its role

* (1:27:51) Outro

Links:

* Professor Sipser’s homepage

* Papers discussed/read

* Halting space-bounded computations (1978)

* Lower bounds on the size of sweeping automata (1979)

* GO is Polynomial-Space Hard (1980)

* A complexity theoretic approach to randomness (1983)

* Parity, circuits, and the polynomial-time hierarchy (1984)

* A follow-up to Furst-Saxe-Sipser

* The Complexity of Finite Functions (1991)


Get full access to The Gradient at thegradientpub.substack.com/subscribe
  continue reading

150 эпизодов

Все серии

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать