Работайте офлайн с приложением Player FM !
Quantum Physics Missing Link Discovered... [Geometric Quantization]
Manage episode 463166767 series 2804511
The classical and quantum worlds are not as apart as we thought.
Eva Miranda, a renowned researcher in symplectic and Poisson geometry, explains how “hidden” geometric structures can unite classical and quantum frameworks. Eva dives into integrable systems, Bohr–Sommerfeld leaves, and the art of geometric quantization, revealing a promising path to bridging longstanding gaps in theoretical physics.
As a listener of TOE you can get a special 20% off discount to The Economist and all it has to offer! Visit https://www.economist.com/toe
Links Mentioned:
• Eva Miranda’s website: https://web.mat.upc.edu/eva.miranda/nova/
• Roger Penrose on TOE: https://www.youtube.com/watch?v=sGm505TFMbU
• Curt’s post on LinkedIn: https://www.linkedin.com/feed/update/urn:li:activity:7284265597671034880/
Timestamps:
00:00 – Introduction
06:12 – Classical vs. Quantum Mechanics
15:32 – Poisson Brackets & Symplectic Forms
24:14 – Integrable Systems
32:01 – Dirac’s Dream & No‐Go Results
39:04 – Action‐Angle Coordinates
47:05 – Toric Manifolds & Polytopes
54:55 – Geometric Quantization Basics
1:03:46 – Bohr–Sommerfeld Leaves
1:12:03 – Handling Singularities
1:20:23 – Poisson Manifolds Beyond Symplectic
1:28:50 – Turing Completeness & Fluid Mechanics Tie‐In
1:35:06 – Topological QFT Overview
1:45:53 – Open Questions in Quantization
1:53:20 – Conclusion
Join My New Substack (Personal Writings): https://curtjaimungal.substack.com
Listen on Spotify: https://tinyurl.com/SpotifyTOE
Become a YouTube Member (Early Access Videos):
https://www.youtube.com/channel/UCdWIQh9DGG6uhJk8eyIFl1w/join
Support TOE on Patreon: https://patreon.com/curtjaimungal
Twitter: https://twitter.com/TOEwithCurt
Discord Invite: https://discord.com/invite/kBcnfNVwqs
#science #physics #theoreticalphysics
Learn more about your ad choices. Visit megaphone.fm/adchoices
284 эпизодов
Manage episode 463166767 series 2804511
The classical and quantum worlds are not as apart as we thought.
Eva Miranda, a renowned researcher in symplectic and Poisson geometry, explains how “hidden” geometric structures can unite classical and quantum frameworks. Eva dives into integrable systems, Bohr–Sommerfeld leaves, and the art of geometric quantization, revealing a promising path to bridging longstanding gaps in theoretical physics.
As a listener of TOE you can get a special 20% off discount to The Economist and all it has to offer! Visit https://www.economist.com/toe
Links Mentioned:
• Eva Miranda’s website: https://web.mat.upc.edu/eva.miranda/nova/
• Roger Penrose on TOE: https://www.youtube.com/watch?v=sGm505TFMbU
• Curt’s post on LinkedIn: https://www.linkedin.com/feed/update/urn:li:activity:7284265597671034880/
Timestamps:
00:00 – Introduction
06:12 – Classical vs. Quantum Mechanics
15:32 – Poisson Brackets & Symplectic Forms
24:14 – Integrable Systems
32:01 – Dirac’s Dream & No‐Go Results
39:04 – Action‐Angle Coordinates
47:05 – Toric Manifolds & Polytopes
54:55 – Geometric Quantization Basics
1:03:46 – Bohr–Sommerfeld Leaves
1:12:03 – Handling Singularities
1:20:23 – Poisson Manifolds Beyond Symplectic
1:28:50 – Turing Completeness & Fluid Mechanics Tie‐In
1:35:06 – Topological QFT Overview
1:45:53 – Open Questions in Quantization
1:53:20 – Conclusion
Join My New Substack (Personal Writings): https://curtjaimungal.substack.com
Listen on Spotify: https://tinyurl.com/SpotifyTOE
Become a YouTube Member (Early Access Videos):
https://www.youtube.com/channel/UCdWIQh9DGG6uhJk8eyIFl1w/join
Support TOE on Patreon: https://patreon.com/curtjaimungal
Twitter: https://twitter.com/TOEwithCurt
Discord Invite: https://discord.com/invite/kBcnfNVwqs
#science #physics #theoreticalphysics
Learn more about your ad choices. Visit megaphone.fm/adchoices
284 эпизодов
Alle Folgen
×Добро пожаловать в Player FM!
Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.