Artwork

Контент предоставлен Hugo Bowne-Anderson. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Hugo Bowne-Anderson или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Episode 41: Beyond Prompt Engineering: Can AI Learn to Set Its Own Goals?

43:51
 
Поделиться
 

Manage episode 458285998 series 3317544
Контент предоставлен Hugo Bowne-Anderson. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Hugo Bowne-Anderson или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Hugo Bowne-Anderson hosts a panel discussion from the MLOps World and Generative AI Summit in Austin, exploring the long-term growth of AI by distinguishing real problem-solving from trend-based solutions. If you're navigating the evolving landscape of generative AI, productionizing models, or questioning the hype, this episode dives into the tough questions shaping the field.

The panel features:

  • Ben Taylor (Jepson) – CEO and Founder at VEOX Inc., with experience in AI exploration, genetic programming, and deep learning.
  • Joe Reis – Co-founder of Ternary Data and author of Fundamentals of Data Engineering.
  • Juan Sequeda – Principal Scientist and Head of AI Lab at Data.World, known for his expertise in knowledge graphs and the semantic web.

The discussion unpacks essential topics such as:

  • The shift from prompt engineering to goal engineering—letting AI iterate toward well-defined objectives.
  • Whether generative AI is having an electricity moment or more of a blockchain trajectory.
  • The combinatorial power of AI to explore new solutions, drawing parallels to AlphaZero redefining strategy games.
  • The POC-to-production gap and why AI projects stall.
  • Failure modes, hallucinations, and governance risks—and how to mitigate them.
  • The disconnect between executive optimism and employee workload.

Hugo also mentions his upcoming workshop on escaping Proof-of-Concept Purgatory, which has evolved into a Maven course "Building LLM Applications for Data Scientists and Software Engineers" launching in January. Vanishing Gradient listeners can get 25% off the course (use the code VG25), with $1,000 in Modal compute credits included.

A huge thanks to Dave Scharbach and the Toronto Machine Learning Society for organizing the conference and to the audience for their thoughtful questions.

As we head into the new year, this conversation offers a reality check amidst the growing AI agent hype.

LINKS

  continue reading

42 эпизодов

Artwork
iconПоделиться
 
Manage episode 458285998 series 3317544
Контент предоставлен Hugo Bowne-Anderson. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Hugo Bowne-Anderson или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Hugo Bowne-Anderson hosts a panel discussion from the MLOps World and Generative AI Summit in Austin, exploring the long-term growth of AI by distinguishing real problem-solving from trend-based solutions. If you're navigating the evolving landscape of generative AI, productionizing models, or questioning the hype, this episode dives into the tough questions shaping the field.

The panel features:

  • Ben Taylor (Jepson) – CEO and Founder at VEOX Inc., with experience in AI exploration, genetic programming, and deep learning.
  • Joe Reis – Co-founder of Ternary Data and author of Fundamentals of Data Engineering.
  • Juan Sequeda – Principal Scientist and Head of AI Lab at Data.World, known for his expertise in knowledge graphs and the semantic web.

The discussion unpacks essential topics such as:

  • The shift from prompt engineering to goal engineering—letting AI iterate toward well-defined objectives.
  • Whether generative AI is having an electricity moment or more of a blockchain trajectory.
  • The combinatorial power of AI to explore new solutions, drawing parallels to AlphaZero redefining strategy games.
  • The POC-to-production gap and why AI projects stall.
  • Failure modes, hallucinations, and governance risks—and how to mitigate them.
  • The disconnect between executive optimism and employee workload.

Hugo also mentions his upcoming workshop on escaping Proof-of-Concept Purgatory, which has evolved into a Maven course "Building LLM Applications for Data Scientists and Software Engineers" launching in January. Vanishing Gradient listeners can get 25% off the course (use the code VG25), with $1,000 in Modal compute credits included.

A huge thanks to Dave Scharbach and the Toronto Machine Learning Society for organizing the conference and to the audience for their thoughtful questions.

As we head into the new year, this conversation offers a reality check amidst the growing AI agent hype.

LINKS

  continue reading

42 эпизодов

Все серии

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать