Artwork

Контент предоставлен Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

An Introduction to the MLOps Tool Evaluation Rubric

1:00:23
 
Поделиться
 

Manage episode 489496433 series 1264075
Контент предоставлен Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Organizations looking to build and adopt artificial intelligence (AI)–enabled systems face the challenge of identifying the right capabilities and tools to support Machine Learning Operations (MLOps) pipelines. Navigating the wide range of available tools can be especially difficult for organizations new to AI or those that have not yet deployed systems at scale. This webcast introduces the MLOps Tool Evaluation Rubric, designed to help acquisition teams pinpoint organizational priorities for MLOps tooling, customize rubrics to evaluate those key capabilities, and ultimately select tools that will effectively support ML developers and systems throughout the entire lifecycle, from exploratory data analysis to model deployment and monitoring. This webcast will walk viewers through the rubric's design and content, share lessons learned from applying the rubric in practice, and conclude with a brief demo.

What Attendees Will Learn:

• How to identify and prioritize key capabilities for MLOps tooling within their organizations

• How to customize and apply the MLOps Tool Evaluation Rubric to evaluate potential tools effectively

• Best practices and lessons learned from real-world use of the rubric in AI projects

  continue reading

174 эпизодов

Artwork
iconПоделиться
 
Manage episode 489496433 series 1264075
Контент предоставлен Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Organizations looking to build and adopt artificial intelligence (AI)–enabled systems face the challenge of identifying the right capabilities and tools to support Machine Learning Operations (MLOps) pipelines. Navigating the wide range of available tools can be especially difficult for organizations new to AI or those that have not yet deployed systems at scale. This webcast introduces the MLOps Tool Evaluation Rubric, designed to help acquisition teams pinpoint organizational priorities for MLOps tooling, customize rubrics to evaluate those key capabilities, and ultimately select tools that will effectively support ML developers and systems throughout the entire lifecycle, from exploratory data analysis to model deployment and monitoring. This webcast will walk viewers through the rubric's design and content, share lessons learned from applying the rubric in practice, and conclude with a brief demo.

What Attendees Will Learn:

• How to identify and prioritize key capabilities for MLOps tooling within their organizations

• How to customize and apply the MLOps Tool Evaluation Rubric to evaluate potential tools effectively

• Best practices and lessons learned from real-world use of the rubric in AI projects

  continue reading

174 эпизодов

Όλα τα επεισόδια

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать