Artwork

Контент предоставлен Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Using LLMs to Evaluate Code

1:02:10
 
Поделиться
 

Manage episode 509954461 series 1264075
Контент предоставлен Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Finding and fixing weaknesses and vulnerabilities in source code has been an ongoing challenge. There is a lot of excitement about the ability of large language models (LLMs, e.g., GenAI) to produce and evaluate programs. One question related to this ability is: Do these systems help in practice? We ran experiments with various LLMs to see if they could correctly identify problems with source code or determine that there were no problems. This webcast will provide background on our methods and a summary of our results.

What Will Attendees Learn?

• how well LLMs can evaluate source code

• evolution of capability as new LLMs are released

• how to address potential gaps in capability

  continue reading

174 эпизодов

Artwork
iconПоделиться
 
Manage episode 509954461 series 1264075
Контент предоставлен Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Finding and fixing weaknesses and vulnerabilities in source code has been an ongoing challenge. There is a lot of excitement about the ability of large language models (LLMs, e.g., GenAI) to produce and evaluate programs. One question related to this ability is: Do these systems help in practice? We ran experiments with various LLMs to see if they could correctly identify problems with source code or determine that there were no problems. This webcast will provide background on our methods and a summary of our results.

What Will Attendees Learn?

• how well LLMs can evaluate source code

• evolution of capability as new LLMs are released

• how to address potential gaps in capability

  continue reading

174 эпизодов

All episodes

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать