Artwork

Контент предоставлен Adam Shilton. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Adam Shilton или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

A Framework for Deploying Python in Finance 3 Steps | Ep.064

11:15
 
Поделиться
 

Manage episode 409078113 series 3442672
Контент предоставлен Adam Shilton. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Adam Shilton или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

This video talks through a 3-step framework for deploying Python in finance. ------CHAPTERS------ 1. Python Libraries https://spectacled-redcurrant-dae.notion.site/e28a304c1f034deda720dcdf42ba9ab5?v=4c851e78252c4f5e9f6b625e693f69e3 2. Library prompt https://chat.openai.com/share/c819bec9-3c65-437e-b24c-3a2b78a9210b 3. Application prompt https://chat.openai.com/share/451553fc-bb60-446e-b73b-8dfc11219217

4. Google Colab Code https://chat.openai.com/share/84f85da3-1068-4c70-b3b5-611ace9d5f15 ------SHOW NOTES------ 1. [L] Python Library **Key takeaway** - If there’s not a library for your use case, Python may not be the best option. At least not without a developer. **Pro Tip** - Use this prompt with an AI of your choice: “List some Python libraries that can be used for [Use Case] (that don't relate to the finance industry or algorithmic trading) and describe what they do.” 1. [A] Application **Key Takeaways** - It’s important to match your application to your specific use case. Online environments like Jupyter notebooks have a much lower barrier to entry that installing developer tools like Visual Studio Code. **Pro Tip** - Use this prompt with an AI of your choice: “I’m thinking of performing [use case] using a library like [library]. Is this the library you’d suggest? If so, which platform (e.g Google Colab or Visual Studio Code) would you use to deploy it?” 1. [W] Workflow **Key Takeaway -** Python become infinitely more powerful when added to day to day workflows. Have a think about where it can slot into yours. ## Putting it into practise The best way to get concepts to stick is to put them into practise. Try this: 1. Login to an AI of your choice (ChatGPT Pro or [Copilot](https://copilot.microsoft.com/) preferred as they’re better with coding) 2. Enter this prompt: “Using the Matplotlib library, generate some Python code that someone in corporate finance could use in Google Colab to get an immediate impression of the power of Python - Use dummy data within the code to avoid the need for data upload or data connection - Exclude anything to do with the finance industry or algorithmic trading.” 3. Copy the code 4. Create a new Notebook in Google Colab (login using [this link](https://colab.research.google.com/)) 5. Copy the code and hit play (top left) P.S - Don’t forget to head over to www.techforfinance.com and sign up to Framework Friday for 1 actionable tech framework you can use to stay ahead of the game.

  continue reading

78 эпизодов

Artwork
iconПоделиться
 
Manage episode 409078113 series 3442672
Контент предоставлен Adam Shilton. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Adam Shilton или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

This video talks through a 3-step framework for deploying Python in finance. ------CHAPTERS------ 1. Python Libraries https://spectacled-redcurrant-dae.notion.site/e28a304c1f034deda720dcdf42ba9ab5?v=4c851e78252c4f5e9f6b625e693f69e3 2. Library prompt https://chat.openai.com/share/c819bec9-3c65-437e-b24c-3a2b78a9210b 3. Application prompt https://chat.openai.com/share/451553fc-bb60-446e-b73b-8dfc11219217

4. Google Colab Code https://chat.openai.com/share/84f85da3-1068-4c70-b3b5-611ace9d5f15 ------SHOW NOTES------ 1. [L] Python Library **Key takeaway** - If there’s not a library for your use case, Python may not be the best option. At least not without a developer. **Pro Tip** - Use this prompt with an AI of your choice: “List some Python libraries that can be used for [Use Case] (that don't relate to the finance industry or algorithmic trading) and describe what they do.” 1. [A] Application **Key Takeaways** - It’s important to match your application to your specific use case. Online environments like Jupyter notebooks have a much lower barrier to entry that installing developer tools like Visual Studio Code. **Pro Tip** - Use this prompt with an AI of your choice: “I’m thinking of performing [use case] using a library like [library]. Is this the library you’d suggest? If so, which platform (e.g Google Colab or Visual Studio Code) would you use to deploy it?” 1. [W] Workflow **Key Takeaway -** Python become infinitely more powerful when added to day to day workflows. Have a think about where it can slot into yours. ## Putting it into practise The best way to get concepts to stick is to put them into practise. Try this: 1. Login to an AI of your choice (ChatGPT Pro or [Copilot](https://copilot.microsoft.com/) preferred as they’re better with coding) 2. Enter this prompt: “Using the Matplotlib library, generate some Python code that someone in corporate finance could use in Google Colab to get an immediate impression of the power of Python - Use dummy data within the code to avoid the need for data upload or data connection - Exclude anything to do with the finance industry or algorithmic trading.” 3. Copy the code 4. Create a new Notebook in Google Colab (login using [this link](https://colab.research.google.com/)) 5. Copy the code and hit play (top left) P.S - Don’t forget to head over to www.techforfinance.com and sign up to Framework Friday for 1 actionable tech framework you can use to stay ahead of the game.

  continue reading

78 эпизодов

Все серии

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать