Artwork

Контент предоставлен Daliana Liu. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Daliana Liu или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Uber's ML Systems (Uber Eats, Customer Support), Declarative Machine Learning - Piero Molino - The Data Scientist Show #064

1:50:05
 
Поделиться
 

Manage episode 367811310 series 3012777
Контент предоставлен Daliana Liu. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Daliana Liu или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Piero Molino was one of the founding members of Uber AI Labs. He worked on several deployed ML systems, including an NLP model for Customer Support, and the Uber Eats Recommender System. He is the author of Ludwig , an open source declarative deep learning framework. In 2021 he co-founded Predibase, the low-code declarative machine learning platform built on top of Ludwig. Piero's LinkedIn: https://www.linkedin.com/in/pieromolino

Predibase free access: bit.ly/3PCeqqw

Daliana's Twitter: https://twitter.com/DalianaLiu

Daliana's LinkedIn: https://www.linkedin.com/in/dalianaliu

(00:00:00) Introduction

(00:01:54) Journey to machine learning

(00:03:51) Recommending system at Uber Eats

(00:04:13) Projects at Uber AI

(00:09:34) Uber's customer obsession ticket system

(00:16:01) How to evaluate online-offline business and model performance metrics

(00:17:16) Customer Satisfaction

(00:28:38) When do you know whether a project is good enough

(00:41:50) Declarative machine learning and Ludwig

(00:45:32) Ludwig vs AutoML

(00:54:44) Working with Professor Chris Re

(00:58:32) Why he started Predibase

(01:07:56) LLM and GenAI

(01:10:17) Challenges for LLMs

(01:22:36) Advice for data scientists

(01:34:29) Career advice to his younger self

  continue reading

90 эпизодов

Artwork
iconПоделиться
 
Manage episode 367811310 series 3012777
Контент предоставлен Daliana Liu. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией Daliana Liu или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Piero Molino was one of the founding members of Uber AI Labs. He worked on several deployed ML systems, including an NLP model for Customer Support, and the Uber Eats Recommender System. He is the author of Ludwig , an open source declarative deep learning framework. In 2021 he co-founded Predibase, the low-code declarative machine learning platform built on top of Ludwig. Piero's LinkedIn: https://www.linkedin.com/in/pieromolino

Predibase free access: bit.ly/3PCeqqw

Daliana's Twitter: https://twitter.com/DalianaLiu

Daliana's LinkedIn: https://www.linkedin.com/in/dalianaliu

(00:00:00) Introduction

(00:01:54) Journey to machine learning

(00:03:51) Recommending system at Uber Eats

(00:04:13) Projects at Uber AI

(00:09:34) Uber's customer obsession ticket system

(00:16:01) How to evaluate online-offline business and model performance metrics

(00:17:16) Customer Satisfaction

(00:28:38) When do you know whether a project is good enough

(00:41:50) Declarative machine learning and Ludwig

(00:45:32) Ludwig vs AutoML

(00:54:44) Working with Professor Chris Re

(00:58:32) Why he started Predibase

(01:07:56) LLM and GenAI

(01:10:17) Challenges for LLMs

(01:22:36) Advice for data scientists

(01:34:29) Career advice to his younger self

  continue reading

90 эпизодов

Wszystkie odcinki

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать