Artwork

Контент предоставлен MLSecOps.com. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией MLSecOps.com или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.
Player FM - приложение для подкастов
Работайте офлайн с приложением Player FM !

Privacy Engineering: Safeguarding AI & ML Systems in a Data-Driven Era; With Guest Katharine Jarmul

46:44
 
Поделиться
 

Manage episode 371131529 series 3461851
Контент предоставлен MLSecOps.com. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией MLSecOps.com или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Send us a text

Welcome to The MLSecOps Podcast, where we dive deep into the world of machine learning security operations. In this episode, we talk with the renowned Katharine Jarmul. Katharine is a Principal Data Scientist at Thoughtworks, and the author of the popular new book, Practical Data Privacy.

Katharine also writes a blog titled, Probably Private, where she writes about data privacy, data security, and the intersection of data science and machine learning.

We cover a lot of ground in this conversation; from the more general data privacy and security risks associated with ML models, to more specific cases such as the case with OpenAI’s ChatGPT. We also touch on things like how GDPR and other regulatory frameworks put a spotlight on the privacy concerns we all have when it comes to the massive amount of data collected by models. Where does the data come from? How is it collected? Who gives consent? What if somebody wants to have their data removed?
We also get into how organizations and professionals such as business leaders, data scientists, and ML practitioners can address these challenges when it comes to risks surrounding data, privacy, security, and reputation. We also explore the practices and processes that need to be implemented in order to integrate “Privacy by Design” into the machine learning lifecycle.

Katharine is a wealth of knowledge and insight into these data privacy issues. As always, thanks for listening to the podcast, for reading the transcript, and supporting the show in any way you can.

With that, we hope you enjoy our conversation with Katharine Jarmul.

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

47 эпизодов

Artwork
iconПоделиться
 
Manage episode 371131529 series 3461851
Контент предоставлен MLSecOps.com. Весь контент подкастов, включая эпизоды, графику и описания подкастов, загружается и предоставляется непосредственно компанией MLSecOps.com или ее партнером по платформе подкастов. Если вы считаете, что кто-то использует вашу работу, защищенную авторским правом, без вашего разрешения, вы можете выполнить процедуру, описанную здесь https://ru.player.fm/legal.

Send us a text

Welcome to The MLSecOps Podcast, where we dive deep into the world of machine learning security operations. In this episode, we talk with the renowned Katharine Jarmul. Katharine is a Principal Data Scientist at Thoughtworks, and the author of the popular new book, Practical Data Privacy.

Katharine also writes a blog titled, Probably Private, where she writes about data privacy, data security, and the intersection of data science and machine learning.

We cover a lot of ground in this conversation; from the more general data privacy and security risks associated with ML models, to more specific cases such as the case with OpenAI’s ChatGPT. We also touch on things like how GDPR and other regulatory frameworks put a spotlight on the privacy concerns we all have when it comes to the massive amount of data collected by models. Where does the data come from? How is it collected? Who gives consent? What if somebody wants to have their data removed?
We also get into how organizations and professionals such as business leaders, data scientists, and ML practitioners can address these challenges when it comes to risks surrounding data, privacy, security, and reputation. We also explore the practices and processes that need to be implemented in order to integrate “Privacy by Design” into the machine learning lifecycle.

Katharine is a wealth of knowledge and insight into these data privacy issues. As always, thanks for listening to the podcast, for reading the transcript, and supporting the show in any way you can.

With that, we hope you enjoy our conversation with Katharine Jarmul.

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

47 эпизодов

כל הפרקים

×
 
Loading …

Добро пожаловать в Player FM!

Player FM сканирует Интернет в поисках высококачественных подкастов, чтобы вы могли наслаждаться ими прямо сейчас. Это лучшее приложение для подкастов, которое работает на Android, iPhone и веб-странице. Зарегистрируйтесь, чтобы синхронизировать подписки на разных устройствах.

 

Краткое руководство

Слушайте это шоу, пока исследуете
Прослушать